Skip to content

ggplot2 Version of Figures in “Lattice: Multivariate Data Visualization with R” (Part 10)

August 11, 2009

This is the 10th post in a series attempting to recreate the figures in Lattice: Multivariate Data Visualization with R (R code available here) with ggplot2.

Previous parts in this series: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8, Part 9.


Chapter 10 – Data Manipulation and Related Topics

Topics covered:

  • Non-standard evaluation in the context of lattice
  • The extended formula interface
  • Combining data sources, subsetting
  • Shingles
  • Ordering levels of categorical variables
  • Controlling the appearance of strips


Figure 10.1

> library(lattice)
> library(ggplot2)
> Titanic1 <- as.data.frame(as.table(Titanic[, , "Adult",
+     ]))

lattice

> pl <- barchart(Class ~ Freq | Sex, Titanic1, groups = Survived,
+     stack = TRUE, auto.key = list(title = "Survived",
+         columns = 2))
> print(pl)

ggplot2

> pg <- ggplot(Titanic1, aes(Class, Freq, fill = Survived)) +
+     geom_bar(stat = "identity") + coord_flip() + facet_grid(~Sex)
> print(pg)

chapter10-10_01_l_small.png chapter10-10_01_r_small.png

Figure 10.2

lattice

> Titanic2 <- reshape(Titanic1, direction = "wide", v.names = "Freq",
+     idvar = c("Class", "Sex"), timevar = "Survived")
> names(Titanic2) <- c("Class", "Sex", "Dead", "Alive")
> pl <- barchart(Class ~ Dead + Alive | Sex, Titanic2,
+     stack = TRUE, auto.key = list(columns = 2))
> print(pl)

ggplot2

> pg <- ggplot(Titanic1, aes(Class, Freq, fill = Survived)) +
+     geom_bar(stat = "identity") + coord_flip() + facet_grid(~Sex) +
+     scale_fill_discrete("", labels = c("Dead", "Alive"))
> print(pg)

chapter10-10_02_l_small.png chapter10-10_02_r_small.png

Figure 10.3

> data(Gcsemv, package = "mlmRev")

lattice

> pl <- xyplot(written ~ course | gender, data = Gcsemv,
+     type = c("g", "p", "smooth"), xlab = "Coursework score",
+     ylab = "Written exam score", panel = function(x,
+         y, ...) {
+         panel.xyplot(x, y, ...)
+         panel.rug(x = x[is.na(y)], y = y[is.na(x)])
+     })
> print(pl)

ggplot2

> pg <- ggplot(Gcsemv, aes(course, written)) + geom_point() +
+     geom_smooth(method = "loess", se = F) + geom_rug() +
+     facet_grid(~gender) + xlab("Coursework score") +
+     ylab("Written exam score")
> print(pg)

chapter10-10_03_l_small.png chapter10-10_03_r_small.png

Figure 10.4

lattice

> pl <- qqmath(~written + course, Gcsemv, type = c("p",
+     "g"), outer = TRUE, groups = gender, auto.key = list(columns = 2),
+     f.value = ppoints(200), ylab = "Score")
> print(pl)

ggplot2

> pg <- ggplot(melt(Gcsemv, id.vars = 1:3, na.rm = TRUE)) +
+     geom_point(aes(sample = value, colour = gender),
+         stat = "qq", quantiles = ppoints(200)) + facet_grid(~variable)
> print(pg)

chapter10-10_04_l_small.png chapter10-10_04_r_small.png

Figure 10.5

> set.seed(20051028)
> x1 <- rexp(2000)
> x1 <- x1[x1 > 1]
> x2 <- rexp(1000)

lattice

> pl <- qqmath(~data, make.groups(x1, x2), groups = which,
+     distribution = qexp, aspect = "iso", type = c("p",
+         "g"))
> print(pl)

Note

make.groups() function in lattice package “combines two or more vectors, possibly of different lengths, producing a data frame with a second column indicating which of these vectors that row came from”. Another alternative would be to use combine() function contained in gtools package.

ggplot2

> pg <- ggplot(make.groups(x1, x2)) + geom_point(aes(sample = data,
+     colour = which), stat = "qq", distribution = qexp) +
+     coord_equal()
> print(pg)

chapter10-10_05_l_small.png chapter10-10_05_r_small.png

Figure 10.6

> beavers <- make.groups(beaver1, beaver2)
> beavers$hour <- with(beavers, time%/%100 + 24 * (day -
+     307) + (time%%100)/60)

lattice

> pl <- xyplot(temp ~ hour | which, data = beavers, groups = activ,
+     auto.key = list(text = c("inactive", "active"), columns = 2),
+     xlab = "Time (hours)", ylab = "Body Temperature (C)",
+     scales = list(x = list(relation = "sliced")))
> print(pl)

ggplot2

> pg <- ggplot(beavers, aes(hour, temp, colour = factor(activ))) +
+     geom_point() + facet_grid(~which, scales = "free_x") +
+     xlab("Time (hours)") + ylab("Body Temperature (C)")
> print(pg)

chapter10-10_06_l_small.png chapter10-10_06_r_small.png

Figure 10.7

> data(USAge.df, package = "latticeExtra")

lattice

> pl <- xyplot(Population ~ Age | factor(Year), USAge.df,
+     groups = Sex, type = c("l", "g"), auto.key = list(points = FALSE,
+         lines = TRUE, columns = 2), aspect = "xy", ylab = "Population (millions)",
+     subset = Year %in% seq(1905, 1975, by = 10))
> print(pl)

ggplot2

> pg <- ggplot(USAge.df, aes(Age, Population, colour = Sex)) +
+     geom_line(subset = .(Year %in% seq(1905, 1975, by = 10))) +
+     facet_wrap(~Year, ncol = 4) + ylab("Population (millions)")
> print(pg)

Note

ggplot2 doesn’t have the equivalent of aspect="xy" in lattice, which “tries to compute the aspect based on the 45 degree banking rule”.

chapter10-10_07_l_small.png chapter10-10_07_r_small.png

Figure 10.8

lattice

> pl <- xyplot(Population ~ Year | factor(Age), USAge.df,
+     groups = Sex, type = "l", strip = FALSE, strip.left = TRUE,
+     layout = c(1, 3), ylab = "Population (millions)",
+     auto.key = list(lines = TRUE, points = FALSE, columns = 2),
+     subset = Age %in% c(0, 10, 20))
> print(pl)

ggplot2

> pg <- ggplot(USAge.df, aes(Year, Population, colour = Sex)) +
+     geom_line(subset = .(Age %in% c(0, 10, 20))) + facet_grid(Age ~
+     .) + ylab("Population (millions)")
> print(pg)

chapter10-10_08_l_small.png chapter10-10_08_r_small.png

Figure 10.9

lattice

> pl <- xyplot(Population ~ Year | factor(Year - Age),
+     USAge.df, groups = Sex, subset = (Year - Age) %in%
+         1894:1905, type = c("g", "l"), ylab = "Population (millions)",
+     auto.key = list(lines = TRUE, points = FALSE, columns = 2))
> print(pl)

ggplot2

> USAge.df$YearAge <- with(USAge.df, Year - Age)
> pg <- ggplot(USAge.df, aes(Year, Population, colour = Sex)) +
+     geom_line(subset = .((YearAge) %in% 1894:1905)) +
+     facet_wrap(~YearAge) + ylab("Population (millions)")
> print(pg)

chapter10-10_09_l_small.png chapter10-10_09_r_small.png

Figure 10.10

lattice

> pl <- xyplot(stations ~ mag, quakes, jitter.x = TRUE,
+     type = c("p", "smooth"), xlab = "Magnitude (Richter)",
+     ylab = "Number of stations reporting")
> print(pl)

ggplot2

> pg <- ggplot(quakes, aes(mag, stations)) + geom_jitter(position = position_jitter(width = 0.01),
+     shape = 1) + geom_smooth(method = "loess", se = F) +
+     xlab("Magnitude (Richter)") + ylab("Number of stations reporting")
> print(pg)

chapter10-10_10_l_small.png chapter10-10_10_r_small.png

Figure 10.11

> quakes$Mag <- equal.count(quakes$mag, number = 10, overlap = 0.2)

lattice

> ps.mag <- plot(quakes$Mag, ylab = "Level", xlab = "Magnitude (Richter)")
> bwp.quakes <- bwplot(stations ~ Mag, quakes, xlab = "Magnitude",
+     ylab = "Number of stations reporting")
> plot(bwp.quakes, position = c(0, 0, 1, 0.65))
> plot(ps.mag, position = c(0, 0.65, 1, 1), newpage = FALSE)

ggplot2

> Layout <- grid.layout(nrow = 2, ncol = 1, heights = unit(c(1,
+     2), c("null", "null")))
> grid.show.layout(Layout)
> vplayout <- function(...) {
+     grid.newpage()
+     pushViewport(viewport(layout = Layout))
+ }
> subplot <- function(x, y) viewport(layout.pos.row = x,
+     layout.pos.col = y)
> pr <- function() {
+     vplayout()
+     print(p1, vp = subplot(1, 1))
+     print(p2, vp = subplot(2, 1))
+ }
> fn <- function(data = quakes$mag, number = 4, ...) {
+     intrv <<- as.data.frame(co.intervals(data, number,
+         ...))
+     mag <- sort(unique(data))
+     intervals <- ldply(mag, function(x) {
+         t(as.numeric(x < intrv$V2 & x > intrv$V1))
+     })
+     tmp <- melt(cbind(mag, intervals), id.var = 1)
+     tmp[tmp$value > 0, 1:2]
+ }
> quakes.ordered <- merge(quakes, fn(number = 10, overlap = 0.2))
> intrv <- with(intrv, paste(V1, V2, sep = "-"))
> quakes.ordered <- rename(quakes.ordered, c(variable = "magnitude"))
> quakes.ordered$magnitude <- factor(quakes.ordered$magnitude,
+     labels = intrv)
> p1 <- ggplot(fn(number = 10, overlap = 0.2), aes(variable,
+     mag)) + stat_summary(aes(xmin = as.numeric(variable) -
+     0.4, xmax = as.numeric(variable) + 0.4), fun.ymin = min,
+     fun.ymax = max, geom = "rect") + coord_flip()
> p2 <- ggplot(quakes.ordered, aes(as.numeric(magnitude),
+     stations, group = magnitude)) + geom_boxplot() +
+     xlab("Magnitude") + ylab("Number of stations reporting")
> pr()

chapter10-10_11_l_small.png chapter10-10_11_r_small.png

Figure 10.12

lattice

> pl <- bwplot(sqrt(stations) ~ Mag, quakes, scales = list(x = list(limits = as.character(levels(quakes$Mag)),
+     rot = 60)), xlab = "Magnitude (Richter)", ylab = expression(sqrt("Number of stations")))
> print(pl)

ggplot2

> pg <- ggplot(quakes.ordered, aes(magnitude, sqrt(stations),
+     group = magnitude)) + geom_boxplot() + xlab("Magnitude (Richter)") +
+     ylab(expression(sqrt("Number of stations"))) + opts(axis.text.x = theme_text(angle = 45,
+     hjust = 1, colour = "grey50"))
> print(pg)

Note

ggplot2 doesn’t have the equivalent of aspect="xy" in lattice, which “tries to compute the aspect based on the 45 degree banking rule”.

chapter10-10_12_l_small.png chapter10-10_12_r_small.png

Figure 10.13

lattice

> pl <- qqmath(~sqrt(stations) | Mag, quakes, type = c("p",
+     "g"), pch = ".", cex = 3, prepanel = prepanel.qqmathline,
+     aspect = "xy", strip = strip.custom(strip.levels = TRUE,
+         strip.names = FALSE), xlab = "Standard normal quantiles",
+     ylab = expression(sqrt("Number of stations")))
> print(pl)

ggplot2

> pg <- ggplot(quakes.ordered, aes(sample = sqrt(stations))) +
+     geom_point(stat = "qq") + facet_wrap(~magnitude,
+     nrow = 2) + scale_x_continuous("Standard normal quantiles") +
+     scale_y_continuous(expression(sqrt("Number of stations")))
> print(pg)

Note

ggplot2 doesn’t have the equivalent of aspect="xy" in lattice, which “tries to compute the aspect based on the 45 degree banking rule”.

chapter10-10_13_l_small.png chapter10-10_13_r_small.png

Figure 10.14

lattice

> pl <- xyplot(sqrt(stations) ~ mag, quakes, cex = 0.6,
+     panel = panel.bwplot, horizontal = FALSE, box.ratio = 0.05,
+     xlab = "Magnitude (Richter)", ylab = expression(sqrt("Number of stations")))
> print(pl)

ggplot2

> pg <- ggplot(quakes.ordered, aes(factor(mag), sqrt(stations))) +
+     geom_boxplot() + xlab("Magnitude (Richter)") + ylab(expression(sqrt("Number of stations")))
> print(pg)

chapter10-10_14_l_small.png chapter10-10_14_r_small.png

Figure 10.15

> state.density <- data.frame(name = state.name, area = state.x77[,
+     "Area"], population = state.x77[, "Population"],
+     region = state.region)
> state.density$density <- with(state.density, population/area)

lattice

> pl <- dotplot(reorder(name, density) ~ density, state.density,
+     xlab = "Population Density (thousands per square mile)")
> print(pl)

ggplot2

> pg <- ggplot(state.density, aes(density, reorder(name,
+     density))) + geom_point() + xlab("Population Density (thousands per square mile)")
> print(pg)

chapter10-10_15_l_small.png chapter10-10_15_r_small.png

Figure 10.16

lattice

> state.density$Density <- shingle(state.density$density,
+     intervals = rbind(c(0, 0.2), c(0.2, 1)))
> pl <- dotplot(reorder(name, density) ~ density | Density,
+     state.density, strip = FALSE, layout = c(2, 1), levels.fos = 1:50,
+     scales = list(x = "free"), between = list(x = 0.5),
+     xlab = "Population Density (thousands per square mile)",
+     par.settings = list(layout.widths = list(panel = c(2,
+         1))))
> print(pl)

ggplot2

> state.density$pos <- state.density$density > 0.2
> pg <- ggplot(state.density, aes(density, reorder(name,
+     density))) + geom_point() + facet_grid(~pos, scales = "free_x") +
+     xlab("Population Density (thousands per square mile)") +
+     opts(strip.background = theme_blank(), strip.text.x = theme_blank())
> print(pg)

Note

It is not possible to change the facet width in ggplot2.

chapter10-10_16_l_small.png chapter10-10_16_r_small.png

Figure 10.17

lattice

> cutAndStack <- function(x, number = 6, overlap = 0.1,
+     type = "l", xlab = "Time", ylab = deparse(substitute(x)),
+     ...) {
+     time <- if (is.ts(x))
+         time(x)
+     else seq_along(x)
+     Time <- equal.count(as.numeric(time), number = number,
+         overlap = overlap)
+     xyplot(as.numeric(x) ~ time | Time, type = type,
+         xlab = xlab, ylab = ylab, default.scales = list(x = list(relation = "free"),
+             y = list(relation = "free")), ...)
+ }
> pl <- cutAndStack(EuStockMarkets[, "DAX"], aspect = "xy",
+     scales = list(x = list(draw = FALSE), y = list(rot = 0)))
> print(pl)

ggplot2

> library(zoo)
> cutAndStack_g <- function(data, number = 4, overlap = 0.1) {
+     ylab = deparse(substitute(data))
+     data <- as.data.frame(data)
+     data$id <- if (is.ts(data$x))
+         time(data$x)
+     else seq_along(data$x)
+     intrv <<- as.data.frame(co.intervals(data$id, number,
+         overlap))
+     x <- sort(unique(data$id))
+     intervals <- ldply(x, function(x) {
+         t(as.numeric(x < intrv$V2 & x > intrv$V1))
+     })
+     tmp <- melt(cbind(x, intervals), id.var = 1)
+     tmp <- tmp[tmp$value > 0, 1:2]
+     tmp <- rename(tmp, c(x = "id"))
+     stock <- merge(data, tmp)
+     stock$variable <- factor(stock$variable, labels = with(intrv,
+         paste(as.yearmon(V1), as.yearmon(V2), sep = " - ")))
+     p <- ggplot(stock, aes(id, x)) + geom_line() + facet_wrap(~variable,
+         scales = "free", ncol = 1, as.table = FALSE) +
+         scale_x_continuous("", breaks = NA) + ylab(ylab)
+     print(p)
+ }
> cutAndStack_g(data = EuStockMarkets[, "DAX"], number = 6,
+     overlap = 0.1)

Note

ggplot2 doesn’t have the equivalent of aspect=”xy” in lattice, which “tries to compute the aspect based on the 45 degree banking rule”.

chapter10-10_17_l_small.png chapter10-10_17_r_small.png

Figure 10.18

lattice

> bdp1 <- dotplot(as.character(variety) ~ yield | as.character(site),
+     barley, groups = year, layout = c(1, 6), auto.key = list(space = "top",
+         columns = 2), aspect = "fill")
> bdp2 <- dotplot(variety ~ yield | site, barley, groups = year,
+     layout = c(1, 6), auto.key = list(space = "top",
+         columns = 2), aspect = "fill")
> plot(bdp1, split = c(1, 1, 2, 1))
> plot(bdp2, split = c(2, 1, 2, 1), newpage = FALSE)

ggplot2

> Layout <- grid.layout(ncol = 3, widths = unit(c(2, 2,
+     0.75), c("null", "null", "null")))
> vplayout <- function(...) {
+     grid.newpage()
+     pushViewport(viewport(layout = Layout))
+ }
> subplot <- function(x, y) viewport(layout.pos.row = x,
+     layout.pos.col = y)
> pr <- function() {
+     vplayout()
+     print(p_left, vp = subplot(1, 1))
+     print(p_right, vp = subplot(1, 2))
+     print(legend, vp = subplot(1, 3))
+ }
> p <- ggplot(barley, aes(yield, variety, colour = year)) +
+     geom_point() + facet_wrap(~site, ncol = 1) + ylab("")
> legend <- p + opts(keep = "legend_box")
> p_right <- p + opts(legend.position = "none")
> barley$site <- factor(barley$site, levels = sort(levels(barley$site)))
> barley$variety <- factor(barley$variety, levels = sort(levels(barley$variety)))
> p_left <- p_right %+% barley
> pr()

chapter10-10_18_l_small.png chapter10-10_18_r_small.png

Figure 10.19

> state.density <- data.frame(name = state.name, area = state.x77[,
+     "Area"], population = state.x77[, "Population"],
+     region = state.region)
> state.density$density <- with(state.density, population/area)

lattice

> pl <- dotplot(reorder(name, density) ~ 1000 * density,
+     state.density, scales = list(x = list(log = 10)),
+     xlab = "Density (per square mile)")
> print(pl)

ggplot2

> pg <- ggplot(state.density, aes(density * 1000, reorder(name,
+     density))) + geom_point() + scale_x_log10() + xlab("Density (per square mile)") +
+     ylab("")
> print(pg)

chapter10-10_19_l_small.png chapter10-10_19_r_small.png

Figure 10.20

> state.density$region <- with(state.density, reorder(region,
+     density, median))
> state.density$name <- with(state.density, reorder(reorder(name,
+     density), as.numeric(region)))

lattice

> pl <- dotplot(name ~ 1000 * density | region, state.density,
+     strip = FALSE, strip.left = TRUE, layout = c(1, 4),
+     scales = list(x = list(log = 10), y = list(relation = "free")),
+     xlab = "Density (per square mile)")
> print(pl)

ggplot2

> pg <- ggplot(state.density, aes(1000 * density, name)) +
+     geom_point() + facet_grid(region ~ ., scales = "free_y") +
+     scale_x_log10() + xlab("Density (per square mile)") +
+     ylab("")
> print(pg)

chapter10-10_20_l_small.png chapter10-10_20_r_small.png

Figure 10.21

> library("latticeExtra")

lattice

> print(pl)
> print(resizePanels())

ggplot2

> pg <- pg + facet_grid(region~., scales = "free_y", space = "free", as.table = FALSE)
> print(pg)

chapter10-10_21_l_small.png chapter10-10_21_r_small.png

Figure 10.22

> data(USCancerRates, package = "latticeExtra")

lattice

> pl <- xyplot(rate.male ~ rate.female | state, USCancerRates,
+     aspect = "iso", pch = ".", cex = 2, index.cond = function(x,
+         y) {
+         median(y - x, na.rm = TRUE)
+     }, scales = list(log = 2, at = c(75, 150, 300, 600)),
+     panel = function(...) {
+         panel.grid(h = -1, v = -1)
+         panel.abline(0, 1)
+         panel.xyplot(...)
+     })
> print(pl)

ggplot2

> med <- ddply(USCancerRates, .(state), summarise, med = median(rate.female -
+     rate.male, na.rm = TRUE))
> med$state <- with(med, reorder(state, med))
> USCancerRates$state <- factor(USCancerRates$state, levels = levels(med$state))
> pg <- ggplot(USCancerRates, aes(rate.female, rate.male)) +
+     geom_point(size = 1) + geom_abline(intercept = 0,
+     slope = 1) + scale_x_log2(breaks = c(75, 150, 300,
+     600), labels = c(75, 150, 300, 600)) + scale_y_log2(breaks = c(75,
+     150, 300, 600), labels = c(75, 150, 300, 600)) +
+     facet_wrap(~state, ncol = 7)
> print(pg)

Note

For some strange reason the order of facets is different compared to lattice plot, although the formula to set the levels is the same!

chapter10-10_22_l_small.png chapter10-10_22_r_small.png

Figure 10.23

> data(Chem97, package = "mlmRev")

lattice

> strip.style4 <- function(..., style) {
+     strip.default(..., style = 4)
+ }
> pl <- qqmath(~gcsescore | factor(score), Chem97, groups = gender,
+     type = c("l", "g"), aspect = "xy", auto.key = list(points = FALSE,
+         lines = TRUE, columns = 2), f.value = ppoints(100),
+     strip = strip.style4, xlab = "Standard normal quantiles",
+     ylab = "Average GCSE score")
> print(pl)

ggplot2

> pg <- ggplot(Chem97, aes(sample = gcsescore, colour = gender)) +
+     geom_point(stat = "qq", quantiles = ppoints(100)) +
+     facet_wrap(~score) + scale_x_continuous("Standard Normal Quantiles") +
+     scale_y_continuous("Average GCSE Score") + theme_bw()
> print(pg)

Note

ggplot2 doesn’t have the equivalent of aspect="xy" in lattice, which “tries to compute the aspect based on the 45 degree banking rule”.

chapter10-10_23_l_small.png chapter10-10_23_r_small.png

Figure 10.24

lattice

> strip.combined <- function(which.given, which.panel,
+     factor.levels, ...) {
+     if (which.given == 1) {
+         panel.rect(0, 0, 1, 1, col = "grey90", border = 1)
+         panel.text(x = 0, y = 0.5, pos = 4, lab = factor.levels[which.panel[which.given]])
+     }
+     if (which.given == 2) {
+         panel.text(x = 1, y = 0.5, pos = 2, lab = factor.levels[which.panel[which.given]])
+     }
+ }
> pl <- qqmath(~gcsescore | factor(score) + gender, Chem97,
+     f.value = ppoints(100), type = c("l", "g"), aspect = "xy",
+     strip = strip.combined, par.strip.text = list(lines = 0.5),
+     xlab = "Standard normal quantiles", ylab = "Average GCSE score")
> print(pl)

ggplot2

> Chem97 <- transform(Chem97, sc_gen = paste(score, gender))
> library(gtools)
> Chem97$sc_gen <- factor(Chem97$sc_gen, levels = mixedsort(unique(Chem97$sc_gen)))
> pg <- ggplot(Chem97, aes(sample = gcsescore)) + geom_point(stat = "qq",
+     quantiles = ppoints(100)) + facet_wrap(~sc_gen, nrow = 2) +
+     scale_x_continuous("Standard normal quantiles") +
+     scale_y_continuous("Average GCSE score")
> print(pg)

Note

ggplot2 doesn’t have the equivalent of aspect="xy" in lattice, which “tries to compute the aspect based on the 45 degree banking rule”.

chapter10-10_24_l_small.png chapter10-10_24_r_small.png

Figure 10.25

> morris <- barley$site == "Morris"
> barley$year[morris] <- ifelse(barley$year[morris] ==
+     "1931", "1932", "1931")

lattice

> pl <- stripplot(sqrt(abs(residuals(lm(yield ~ variety +
+     year + site)))) ~ site, data = barley, groups = year,
+     jitter.data = TRUE, auto.key = list(points = TRUE,
+         lines = TRUE, columns = 2), type = c("p", "a"),
+     fun = median, ylab = expression(abs("Residual Barley Yield")^{
+         1/2
+     }))
> print(pl)

ggplot2

> pg <- ggplot(barley, aes(site, sqrt(abs(residuals(lm(yield ~
+     variety + year + site)))), colour = year)) + geom_jitter(position = position_jitter(w = 0.1)) +
+     geom_line(stat = "summary", fun.y = median, aes(group = year)) +
+     ylab(expression(abs("Residual Barley Yield")^{
+         1/2
+     }))
> print(pg)

chapter10-10_25_l_small.png chapter10-10_25_r_small.png

About these ads
6 Comments leave one →
  1. August 11, 2009 11:56 pm

    For figure 10.25 may I suggest changing the default position_jitter

    pg <- ggplot(barley, aes(site, sqrt(abs(residuals(lm(yield ~
    variety + year + site)))), colour = year)) +
    geom_jitter(position = position_jitter(h=0,w=.1)) +
    geom_line(stat = "summary", fun.y = median, aes(group = year)) +
    ylab(expression(abs("Residual Barley Yield")^{
    1/2
    }))
    print(pg)

    • learnr permalink*
      August 12, 2009 9:13 am

      Thanks.
      I have updated the post with your suggestion.

  2. Rahul permalink
    September 16, 2009 1:38 pm

    Hi,

    In Fig. 10.16 (and others such Fig. 10.19), the label on the x-axis is not centered with respect to the plot’s axis for those drawn using ggplot2, however the ones drawn using lattice are centered.

    Any idea on how this can be fixed?

    Cheers,
    Rahul

    • learnr permalink*
      September 16, 2009 5:36 pm

      You’re right – I hadn’t noticed this before.

      It seems that the only way is to manually adjust the positioning of the x-axis title using opts(). Currently the title is centered in relation to the plot area not the x-axis.

Trackbacks

  1. ggplot2 Version of Figures in “Lattice: Multivariate Data Visualization with R” (Part 11) « Learning R
  2. ggplot2 Version of Figures in “Lattice: Multivariate Data Visualization with R” (Part 13) « Learning R

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 182 other followers

%d bloggers like this: